Relativity without Einstein
 Relativity without SpaceTime 
It’s true! The concept of
4dimensional spacetime is by no means
necessary in order to
explain the physics of relativity!
Yes,
relativity exists in our physical world. – But do we need Einstein?
What we call RELATIVITY
comprises the following measurable phenomena:
For Special Relativity:
(1) The speed of light ‘c’ is a constant (at least as the result of a measurement)
(2) Physical objects contract when in motion
(3) The speed of clocks slows down in motion (and so do all temporal processes)
(4) Mass increases  which implies massenergy equivalence
For General Relativity:
(5) The speed of light ‘c’ is reduced in a gravitational field
(6) A light beam is curved in a gravitational field
(7) The speed of clocks is reduced in a gravitational field (and so are all temporal processes)
Einstein explained the phenomena of relativity by assuming that space and time form a close unity, which is described by the 4dimensional geometry of “spacetime”. In the general case, this 4dimensional system is curved.
The mathematical treatment of a 4dimensional curved space is a highly challenging task. Only few physicists are able to do this. (Nobel prizewinner Steven Weinberg suspects that there may be fewer than 10 in the whole world.)
However, the same results as those from Einstein’s spacetime can be achieved using standard mathematics (even at a school level).
– The purpose of this website is to demonstrate this.
As a result, relativity  special as well as general  is not restricted to a few exceptional individuals but can be taught even at school.
How does this work?
Einstein’s assumptions regarding spacetime can be replaced by the following facts, which exist independently of relativity:

The contraction is simply a consequence of the fact that the fields which hold together the constituents of physical objects contract. The reason for this is the finite speed of light at which the binding fields propagate when in motion.
This consequence was noted very soon after the MichelsonMorley experiment by several physicists (e.g. Heaviside, Fitzgerald, Lorentz), who drew on Maxwell’s recently developed theory of electromagnetism. Meanwhile it has been shown that the contraction occurs for any kind of field.

The dilation of any periodic process (such as a clock function) in motion is an immediate consequence of the internal oscillation of elementary particles. The constituents of elementary particles are massless and oscillate internally at the speed of light.
This behaviour of elementary particles was basically found by Louis de Broglie in 1923 when he detected the wave properties of elementary particles. A quantitative description was given by Paul Dirac in 1928 when he developed the famous Dirac equation for the electron. Erwin Schrödinger called this motion “Zitterbewegung”. 
The mass of elementary particles is itself also a consequence of the finite speed of light, at which the fields binding the constituents of the elementary particles propagate.
This mechanism also causes the increase in mass when an object is in motion, which is a direct consequence of the contraction. And this in turn leads directly to Einstein’s famous massenergy equivalence equation.
For details of this process please refer to
the origin of relativity and
the origin of mass.

The reduction of the speed of light in a gravitational field is a proven fact. It can be explained by a physical model which refers to the assumption of exchange particles that mediate every force.
When a lightlike particle interacts with the exchange particles of any force, its motion is inhibited. This causes a reduction in its speed which can be quantitatively explained by this process.

The bending of a lightlike particle in a gravitational field is a simple classical refraction process.
The stronger the gravitational field is, i.e. the closer a lightlike particle is to a gravitational source, the more the speed of light is reduced. This fact causes classical refraction. The numerical result of this refraction conforms exactly to the curvature assumed by Einstein.

Gravitational acceleration – corresponding to gravitational mass – is the refraction of the internal motion in an elementary particle.
The oscillating constituents of an elementary particle are also refracted by the gravitational field. The elementary particle itself is thereby caused to move towards the gravitational source. This fact quantitatively explains Newton’s law of gravity in the classical case and General Relativity in the relativistic case.
For details of this process, please refer to the origin of gravity.
